Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
1.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article Dans Anglais | MEDLINE | ID: covidwho-1493827

Résumé

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


Sujets)
COVID-19/complications , Lymphopénie/sang , SARS-CoV-2/immunologie , Lymphocytes T/anatomopathologie , Adolescent , Adulte , Facteurs âges , Sujet âgé , Apoptose/immunologie , Autophagie , COVID-19/sang , COVID-19/immunologie , COVID-19/virologie , Enfant , Enfant d'âge préscolaire , Humains , Nourrisson , Lymphopénie/immunologie , Lymphopénie/anatomopathologie , Lymphopénie/virologie , Mâle , Adulte d'âge moyen , Mitochondries/immunologie , Mitochondries/anatomopathologie , Espèces réactives de l'oxygène/métabolisme , Lymphocytes T/cytologie , Lymphocytes T/immunologie
2.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Article Dans Anglais | MEDLINE | ID: covidwho-1182823

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

3.
Front Med (Lausanne) ; 8: 585358, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1116697

Résumé

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.

4.
J Clin Invest ; 130(10): 5235-5244, 2020 10 01.
Article Dans Anglais | MEDLINE | ID: covidwho-969923

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus 2019 (COVID-19) pneumonia. Little is known about the kinetics, tissue distribution, cross-reactivity, and neutralization antibody response in patients with COVID-19. Two groups of patients with RT-PCR-confirmed COVID-19 were enrolled in this study: 12 severely ill patients in intensive care units who needed mechanical ventilation and 11 mildly ill patients in isolation wards. Serial clinical samples were collected for laboratory detection. Results showed that most of the severely ill patients had viral shedding in a variety of tissues for 20-40 days after onset of disease (8/12, 66.7%), while the majority of mildly ill patients had viral shedding restricted to the respiratory tract and had no detectable virus RNA 10 days after onset (9/11, 81.8%). Mildly ill patients showed significantly lower IgM response compared with that of the severe group. IgG responses were detected in most patients in both the severe and mild groups at 9 days after onset, and remained at a high level throughout the study. Antibodies cross-reactive to SARS-CoV and SARS-CoV-2 were detected in patients with COVID-19 but not in patients with MERS. High levels of neutralizing antibodies were induced after about 10 days after onset in both severely and mildly ill patients which were higher in the severe group. SARS-CoV-2 pseudotype neutralization test and focus reduction neutralization test with authentic virus showed consistent results. Sera from patients with COVID-19 inhibited SARS-CoV-2 entry. Sera from convalescent patients with SARS or Middle East respiratory syndrome (MERS) did not. Anti-SARS-CoV-2 S and N IgG levels exhibited a moderate correlation with neutralization titers in patients' plasma. This study improves our understanding of immune response in humans after SARS-CoV-2 infection.


Sujets)
Anticorps antiviraux/sang , Betacoronavirus/métabolisme , Infections à coronavirus/sang , Pneumopathie virale/sang , Charge virale , Excrétion virale , Adulte , Sujet âgé , Spécificité des anticorps , COVID-19 , Réactions croisées , Femelle , Humains , Cinétique , Mâle , Adulte d'âge moyen , Pandémies , SARS-CoV-2 , Indice de gravité de la maladie
5.
Natl Sci Rev ; 7(9): 1428-1436, 2020 Sep.
Article Dans Anglais | MEDLINE | ID: covidwho-401795

Résumé

Effective therapies are urgently needed for the SARS-CoV-2 pandemic. Chloroquine has been proved to have antiviral effect against coronavirus in vitro. In this study, we aimed to assess the efficacy and safety of chloroquine with different doses in COVID-19. In this multicenter prospective observational study, we enrolled patients older than 18 years old with confirmed SARS-CoV-2 infection excluding critical cases from 12 hospitals in Guangdong and Hubei Provinces. Eligible patients received chloroquine phosphate 500 mg, orally, once (half dose) or twice (full dose) daily. Patients treated with non-chloroquine therapy were included as historical controls. The primary endpoint is the time to undetectable viral RNA. Secondary outcomes include the proportion of patients with undetectable viral RNA by day 10 and 14, hospitalization time, duration of fever, and adverse events. A total of 197 patients completed chloroquine treatment, and 176 patients were included as historical controls. The median time to achieve an undetectable viral RNA was shorter in chloroquine than in non-chloroquine (absolute difference in medians -6.0 days; 95% CI -6.0 to -4.0). The duration of fever is shorter in chloroquine (geometric mean ratio 0.6; 95% CI 0.5 to 0.8). No serious adverse events were observed in the chloroquine group. Patients treated with half dose experienced lower rate of adverse events than with full dose. Although randomized trials are needed for further evaluation, this study provides evidence for safety and efficacy of chloroquine in COVID-19 and suggests that chloroquine can be a cost-effective therapy for combating the COVID-19 pandemic.

SÉLECTION CITATIONS
Détails de la recherche